
bitvec
little bits of memory

A magical library by myrrlyn

@ myrrlyn 1

Who Am I

• Rust Enthusiast

@ myrrlyn 2

Who Am I

• Rust Enthusiast
• Satellite Software Engineer

@ myrrlyn 3

But enough about me

What even is bitvec

@ myrrlyn 4

Apples vs Oranges

C++
� has bit-field syntax
� has <bitset>
� packs std!"vector<bool>

Rust
� does not have it

� does not have this either

� also does not do that

@ myrrlyn 5

Why Did I Make bitvec

Jealousy
� Anything C++ can do, Rust

should do also

Spite
� Anything C++ can do, Rust

should do better

@ myrrlyn 6

But What Is bitvec

Pointer to [u1]
� Describes any region of memory with

bit precision
� ANY region: can start and end at any

bit in a byte

…with more power!
� Users can specify element size (u8,

u16, u32, u64) and bit ordering

� BYO Bit Ordering

@ myrrlyn 7

(How) Did I Do That?

Hint: Scarily

@ myrrlyn 8

How It Doesn’t Work

� Pointer, With Extras

� This is too big

� Can’t become a reference
� Can’t be used in any traits

struct BadPointer<T> {
ptr: *const T,
bit: u8,

}

Does not become

&T

@ myrrlyn 9

How It Does Work

� Slice pointer

� First-class language item

� Points to the start of memory,
and counts how many things
are there

�Can become a reference
�Can be used in traits

struct SlicePtr<T> {
ptr: *const T,
len: usize,

}

does become

&[T]

@ myrrlyn 10

Nifty Details

� Still a slice pointer
� Can go anywhere a slice pointer

can
� Can become a reference
� Can be used in traits
� Cannot be used as a slice pointer!
� Can only index 12% of usize

template <typename T>
struct BitPtr {

// byte select
size_t ptr_head
: ctzll(alignof(T));

// data address
size_t ptr_data
: sizeof(uintptr_t) * 8
- ctzll(alignof(T));

// bit count
size_t len_head : 3;

// bit select
size_t len_bits
: sizeof(size_t) * 8 - 3;

};

@ myrrlyn 11

Show Me The Memory 6 [<-------------------
4 <------------------------------
2 <------------------------------
0 <-------------------]
f e d c b a 9 8 7 6 5 4 3 2 1 0

Suppose we have this span of
<LittleEndian, u16>

How do we work with it?

@ myrrlyn 12

Show Me The Memory 6 [<--------------------
4 <------------------------------
2 <------------------------------
0 <-------------------]
f e d c b a 9 8 7 6 5 4 3 2 1 0

The middle two
elements are
completely owned, no
contest

@ myrrlyn 13

Show Me The Memory 6 <-------] [<-------------------
4 <------------------------------
2 <------------------------------
0 <-------------------] [<-------
f e d c b a 9 8 7 6 5 4 3 2 1 0

The outer elements
are aliased!

@ myrrlyn 14

Does Aliasing Actually Matter? (no.)

Multithreaded
� Uses atomics by default.

� Free on x86

� I don’t test on ARM, but it’s
probably fine

� Ordering!"Relaxed is good
enough™

Single-Threaded
�[dependencies.bitvec]
default-features = false

� uses Cell<T>
� Safe aliasing, no concurrency

@ myrrlyn 15

Types Are Just Lies We Agree To Believe

� You don’t need to make your region
atomic before making it a BitSlice

� It’s actually only atomic while it’s a
BitSlice

� You and I only care about machine
instructions

� the compiler only cares about
reference correctness

#[cfg(feature = "atomic")]
type Access = AtomicU8;
#[cfg(not(feature = "atomic"))]
type Access = Cell<u8>;
0x0000_7fff_1063_ab3e
as *const u8
as *const u8!"Access

@ myrrlyn 16

What Does The API Look Like

Rust Standard Library
� Raw Pointer *const [bool]
� Slice Reference &[bool]

� with mutability! &mut [bool]

� Vector Vec<bool>
� macros! vec![false, true, …]

� Boxed Slice Box<[bool]>
� refcounts! Arc<[bool]>

bitvec crate
� BitPtr<T> (ITAR Restricted)
� &BitSlice<C, T>

� &mut BitSlice<C, T>

� BitVec<C, T>
� bitvec![C, T; 0, 1, …]

� BitBox<C, T>
� unimplemented!("PRs welcome")

@ myrrlyn 17

How Do I Make A BitSlice

� Import the prelude
�Make some data
�Reinterpret the memory

region

� use bitvec::prelude::*;
� let mut data = [0u8; 16];
� let bits = data.bits_mut::<Big

Endian>();

@ myrrlyn 18

Wait, What’s That C Type Parameter

� bitvec exports a Cursor trait

� It maps from abstract counting to concrete bit positions

� bitvec provides two implementors
� BigEndian: start at high bit, work downwards

� LittleEndian: start at low bit, work upwards

� You can provide your own
� Follow the rules listed in the docs

� Do not lie to me, because I trust you

@ myrrlyn 19

Wait, Why’s That C type parameter?

� IP packets use little-endian bit ordering
�TCP packets use big-endian bit ordering
�Do you trust yourself to remember that?
�type IpPkt = BitSlice<LittleEndian, u32>;
type TcpPkt = BitSlice<BigEndian, u32>;

@ myrrlyn 20

Why Would I, The Audience, Use This

� Memory compaction:
� &[bool] and Vec<bool> are now 12% of their original size.

� Their handles did not become larger

� Roll your own [Option<T>]:
� BitSlice + [MaybeUninit<T>]: it’s smaller!

� I/O protocol buffers:
� TCP specifies fields less than one byte wide.

� You could shift and mask yourself

� Or you could … not. bitvec 0.16 has bitfields built in.

@ myrrlyn 21

How Do I, The Audience, Use This

� Depend on it
� # Cargo.toml

[dependencies]
bitvec = "*"

� Do some text substitution
� use bitvec::prelude::*;

&[bool] → &BitSlice
Vec<bool> → BitVec

� Fix any errors that arise (no IndexMut means no []=)

� File an issue if you think they shouldn’t happen

@ myrrlyn 22

Thanks!

@ myrrlyn 23

