bitvec
little bits of memory

A magical library by myrrlyn

@ myrrlyn

Who Am |

Rust Enthusiast

Who Am |

Rust Enthusiast

Satellite Software Engineer

@ myrrlyn

But enough about me

What evenis bitvec

@ myrrlyn

Apples vs Oranges

C++
has bit-field syntax

has <bitset>

packs std::vector<bool>

NN
does not have it

does not have this either

also does not do that

@ myrrlyn

Why Did | Make bitvec

Jealousy Spite
Anything C++ can do, Rust Anything C++ can do, Rust
should do also should do better

@ myrrlyn

But What Is bitvec

Pointer to [ul]

Describes any region of memory with
bit precision

ANY region: can start and end at any
bit in a byte

...with more powerl

Users can specify element size (us,
ulé, u3d2, ué4) and bit ordering

BYO Bit Ordering

@ myrrlyn

(How) Did | Do That?

Hint: Scarily

@ myrrlyn

How It Doesn’'t Work

BadPointer<T> {

Pointer, With Extras ptr: * T,
bit: us,

This Is too big :

Can't become areference

Can't be used in any traits RS Meh BaEeme

&T

@ myrrlyn

How It Does Work

SlicePtr<T> {
ptr: x Iy

Slice pointer

First-class language item |
len: usize,

Points to the start of memory, Y
and counts how many things

are there

does become
Can become a reference

Can be used Iin fraits &[T

@ myrrlyn

Nifty Details

< =
Still a slice pointer SEREALY o
H c tr head
Can go anywhere a slice pointer etz (alTanof (T)) :
can
ptr_data
Can become areference : () * 8
- ctz11((T));
Can be used in traits
len_head : 3;
Cannot be used as a slice pointerl!
. . len_bits
Can only index 12% of usize : () * 8 — 3;

@ myrrlyn

Show Me The Memory b [< ___________________

fi de==mccccmss=ssccssssss==sss===
A e
Suppose we have this span of 9 R eSS]
<LittleEndian, ul6>
How do we work with it2 fedcba98765 43217860

@ myrrlyn

Show Me The Memory b [<

fy Ge===cmmcms==scccssssssscosssss
P Eremmmemeeeee e s e e e e e e
The middle two
elements are 0 <mmmmmmmmmmmmom s]

completely owned, no fedcha98765432180
contest

@ myrrlyn

Show Me The Memory b
[emmmmmmmmms

fi demmmmmmmmm======
O
Lhe outer elements 8 <7770 - _i __________
re i ha0s e
fedcha98/7654321080

@ myrrlyn

Does Aliasing Actually Matter? (no.)

Multithreaded
Uses atomics by default.
Free on x86

| don't test on ARM, but it's
probably fine

Ordering::Relaxed is good
enough™

Single-Threaded

[dependencies.bitvec]
default-features =

uses Cell<T>

Safe aliasing, no concurrency

@ myrrlyn

Types Are Just Lies We Agree To Believe

You don't need to make yourregion #[cfg(feature = "atomic")]
atomic before making it a BitSlice Access = AtomicU8;

It's actually only atomic while it's a :
BitS11ce y ony #[cfg(not(feature = "atomic"))]

, Access = Cell<u8>;
You and | only care about machine

instructions Bx0000_7fff_1863_ah3e
the compiler only cares about i ud
reference correctness = u8::Access

@ myrrlyn

What Does The APl Look Like

Rust Standard Library bitvec crate

Raw Pointer *const [bool] BitPtr<T> (ITAR Restricted)
Slice Reference &[bool] &BitSlice<C, T>

with mutability! &mut [bool] &mut BitSlice<C, T>
Vector lec<bool> BitVec<C, T>

macros! vec![-] bitvec![C, T; 0, 1, ...]
Boxed Slice Box<[bool]> BitBox<C, T>

refcounts! Arc<[bool]> unimplemented! ("PRs welcome")

@ myrrlyn

How Do | Make A BitSlice

Import the prelude use bitvec::prelude::*;

Make some data let mut data = [Bu8; 16];
Reinterpret the memory let bits = data.btits_mut::<Big
region Endian>();

@ myrrlyn

Wait, What's That C Type Parameter

bitvec exports a Cursor trait
It maps from abstract counting to concrete bit positions
bitvec provides two implementors
BigEndian: start at high bif, work downwards
LittleEndian: start at low bit, work upwards
You can provide your own
Follow the rules listed in the docs

Do not lie fo me, because | trust you

@ myrrlyn

Wait, Why's That C type parameter?

IP packets use little-endian bit ordering
TCP packets use big-endian bit ordering
Do you trust yourselt to remember thate

IpPkt = BitSlice<LittleEndian, u32>;
TcpPkt = BitSlice<BigEndian, u32>;

@ myrrlyn

Why Would |, The Audience, Use This

Memory compaction:
&[bool] and Vec<bool> are now 12% of their original size.
Their handles did not become larger
Roll your own [Option<T>]:
BitSlice + [MaybeUninit<T>]:it's smaller!
|/O protocol buffers:
TCP specifies fields less than one byte wide.

You could shift and mask yourself

Or you could ... not. bitvec 0.16 has bitfields built in.

@ myrrlyn

How Do |, The Audience, Use This

Depend on it

[dependencies]
bitvec = "x"

Do some text substitution

use bitvec::prelude::*;

&[bool] — &BitSlice
Vec<bool> — BitVec

Fix any errors that arise (no IndexMut means no []=)

File an issue if you think they shouldn't happen

@ myrrlyn

@ myrrlyn

